複数音響インテンシティの測定における 最適マイクロホン位置の検討

川野順一 田原俊司 黒岩和治 星野修 (大分大学工学部)

1.まえがき

複数音源場での音響インテンシティの測定法 として、3 D配列マイクロホンアレイと波長定 数マトリクスに基づくフィルタを用いた方法を 示し¹⁾、これまで5音源の音響インテンシティ の測定が可能であることを示した²⁾。しかし、 マイクロホン位置によっては測定できない場合 もあった。今回、今まで測定困難である音源位 置に応じた、マイクロホンの最適位置を遺伝的 アルゴリズム(GA)³⁾を用いて求めることを 検討した。 GAによる最適マイクロホン位置推定システ ム図をFig.1に示す。 印で示したN個の 音源S_n(n番目の音源位置:(r_n, _n, _n)) が存在する複数音源場を対象とする。本システ ムは、 印で示した素子数N+1の3D配列マ イクロホンアレイ(M₀~M_M)、音源信号スペ クトル検出部(sound detection)、およびGA によるマイクロホン最適位置推定部 (Estimation of microphone array arrangement based on GA)で構成されていて、音源方 向((r_n, _n, _n), n = 1 ~ N)が既知である ことを条件に、擬似音源信号より得られるマイ クロホンアレイからの受音信号(m番目のマイ

2.最適マイクロホン位置の推定

Investigation of optimum microphone array arrangement for measurement of multiple sound intensity. By Junichi Kawano, Syunji Tahara, Kazuharu Kuroiwa and Osamu Hosino (Oita University) クロホン信号のスペクトル:Q_m(i))を処理 して、マイクロホン最適位置((^_m, ^_m), m = 1~M)をGAを用いて出力する。音源信号ス ペクトル検出部内のフィルタの伝達関数 H_{nm}(i)⁴⁾はマイクロホン位置と音源方向に よって決定され、正確な音源スペクトルが出力 される。従って、音源とマイクロホンの最適値 が入力されないときの推定誤差 e は、

$$e = \sum_{i=I_1}^{I_2} \left| 1 - \frac{\sum_{n=1}^{N} \sum_{m=1}^{M} H_{nm}(i) Q_m(i)}{Q_0(i)} \right|$$
(1)

で与えられる。この値は、M₁~M_Mのマイクロ ホン受音信号のスペクトルQ_m(i)を用いて、 任意角度で検出されたN個の音源スペクトルの 総和と、M₀の参照マイクロホンの受音信号ス ペクトルQ₀(i)との差を意味し、最適角度 が入力されると0になる。マイクロホン最適位 置推定部では、

$$J = \frac{1}{e^2 + 1}$$
 (2)

より得られる」を適応度として、GAによりマ イクロホン最適位置を推定する。」は最適なマ イクロホン位置が入力されると1となり、最適 値から遠ざかるほど0に近くなる。なお、下限 番号 I_1 と上限番号 I_2 は最適化に有効な周波数 帯域を意味する。

音源信号スペクトル検出部では、マイクロホン位置に関係なく、複数音響インテンシティ測定に必要なXYZ軸上の原点を中心とした仮想2点対での各音源信号を推定することができる。この仮想位置はFig.1の \bigcirc 印で、X軸上の M_x , M_{-x} 、Y軸上の M_y , M_{-y} 、そしてZ軸上の M_y , M_{-y} である。

最初にマイクロホン数Mの2倍(方位角 と (仰角)の生物集団(population)に、それぞ れ60個の個体(gene)を設定し、初代の個体 を発生させる。また、各個体の表現型 (phenotype)を、方位角は0°~360°の範 囲に、また仰角は-90°~90°の範囲内に Gray表現⁵)を用いて変換し、(m, m)と みなす。そして、(2)式より得られる適応度 (fitness)に基づいて各生物集団毎に淘汰、増 殖、交叉、突然変異の進化処理を個体の進化が 収束するまで行う。そして、最終世代での各生 物集団中の最大適応度を持つ個体の表現型が最 適なマイクロホン位置の推定値となる。

複数音響インテンシティは、仮想2点対位置 の信号を用いてクロススペクトル法により求め ることができる⁶)。

本実験での諸パラメータは次のとおりで、遺 伝子のビット長=10ビット、交叉率=0.4、 突然変異率=0.03とした。また、音源方向 はFig.2に示したように、($_1$, $_1$)=(2.5m,67°,25°),($_2$, $_2$)=(2.5m,153°,-64°),($_3$, $_3$)=(2.5m,257°,-18°),($_4$, $_4$)=(2.5m,300°,50°)とした。

3.実験結果

最初に、Fig.3にGAによるマイクロホ ン最適位置推定の初代から500世代の個体の 進化の様子を示す。生物集団の genotype に対 応した各マイクロホンの方向((^_, ^_), n = 1~4)の進化過程が横軸を方位角^、縦軸を 仰角^とした2D表示で表されている。上から 最初の世代、10世代、200世代、500世 代を表している。図の 印がマイクロホン1 (M ₁)の方向(^ ₁ , [^] ₁)で、同様に 印、 EП と 印はそれぞれマイクロホン2(M₂)、3 (M₃)、4(M₄)の方向である。マークの大きさ は各個体の適応度の大きさに比例して表示され ている。図から、初世代は適応度が低く各個体 は広く分散している。10世代になると適応度 は低いが収束し始めているのが分かる。200 世代になると適応度がさらに高くなり収束もあ る程度進み、500世代になるとほぼ1点に収 束していることが分かる。

次にGAで推定をしたマイクロホン最適位置 を用いて信号検出を行った結果をFig.4、 Fig.5に示す。Fig.4は、上から順に 原点位置での音源1の原信号、マイクロホン1 (M_1) の受音信号 $Q_1(i)$ 、原点位置での音源 1の検出信号を表している。図に示されている ように、検出信号と原信号はほぼ一致している 事がわかる。Fig.5は、複数音響インテン

Fig.2 Location of sound sources and microphone array for the four sounds

シティ測定に必要な仮想 2 点対(X軸:M_{-x}, M_xY軸:M_{-y},M_yZ軸:M_{-z},M_z)の位置 での音源1の検出信号を時間軸を拡大して示し ている。上から原信号、X軸上のM_{-x},M_x、Y 軸上のM_{-y},M_y、そしてZ軸上のM_{-z},M_z位 置での検出信号を表し、実線はそれぞれの軸上 の正の位置、破線は負の位置での信号を表す。 図より、仮想 2 点対の位置での推定信号は原信 号と振幅はほぼ一致しており、X軸上のM_{-x}, M_x、Y軸上のM_{-y},M_y、そしてZ軸上のM_{-z},M_z間で位相差が生じている事がわかる。 以上のことから、GAによるマイクロホン最適 位置の推定はできるものと考えてよいことが分 かる。

最後に、GAで推定したマイクロホン最適位 置を用いて複数音響インテンシティの計算を 行った。10回計算を行った結果の振幅の最大 誤差は1.17%で、平均誤差は1.06%で あるが、角度は方位角で最大誤差は21.6° で、平均誤差は11.1°であり、仰角では最 大誤差は16.7°で、平均誤差8.0°であっ た。以上から、GAで推定したマイクロホン最 適位置を用いて複数音響インテンシティの測定 は推定精度が十分ではないものの、基本的に可 能であることが示された。

4.まとめ

複数音響インテンシティの測定に必要な最適 マイクロホン位置を、GAを用いて推定する方 法を示した。4音源5素子マイクロホンアレイ についてシミュレーションを行った結果、基本 的にマイクロホン位置を推定することができ た。また、推定したマイクロホン位置を用いて 音源信号検出および複数音響インテンシティの 測定を行った結果、まだ十分な精度でなかった が、基本的に音響インテンシティの推定ができ ることが示された。今後は今回用いた方法を発 展させ、複数音響インテンシティの測定精度を さらに向上させる検討をしていく予定である。

参考文献

1) K.Kuroiwa, "Detection of incident and reflected sound intensity for oblique incident" proc. of Fourth International Congress on Sound and Vibration Vol.3 pp. 1859-1866(1966)

 2) 川野順一、他"マイクロホンアレイを用 いた多音源音響インテンシティの測定" 20
00年度電気関連学会九州支部大会
3)嘉数佑昇、他共訳"遺伝的アルゴリズムハンドブック"、森北出版社.

4)黒岩和治、他 "マイクロホンアレイを用い た入・反射は音響インテンシティの分離測定" 信学技法 EA94-67(1994-11) 5)田原俊司、他 "多音源場における音源方向 の推定精度改善-Gray表現を用いたGA - "、信学技法 EA2000-79(200 0-11)

6) F.J.Fahy, 'Measurement of acoustic sound intensity using cross-spectral density of two microphone signals", J. Acoust. Soc. Am. 62,1057-1059(1977)