1.序

近年、deBree等は粒子速度センサ(以下、 uセンサと記す)を開発し、その基本的有効 性を示した¹⁰。岩瀬等は、このuセンサを適 用した音響計測を試行している^{2,30}。また deBree等は、さらに小型マイクロフォン(以 下、pセンサと記す)を組合わせた「puセン サ」を導入し、吸音特性の測定並びにイン テンシティの計測^{4,50}を行っている。しか し、puセンサの特性はまだ十分に明らかに されてない。また、puセンサを用いた測定 方法が確立されていないのが現状と考え る。

そこで、本研究ではまず、puセンサの校 正手法を示した後、センサのノイズ特性と 指向特性を示す。また、音圧、粒子速度お よびインテンシティそれぞれのインパルス 応答の測定へ適用した結果を示す。

2. puセンサの基本特性 2.1 puセンサの概要[®]

Fig.1に本研究に用いたpuセンサ (MicroflownPT406-7)の概要を示す。puセン サはuセンサとpセンサを1/2インチマイク ロフォンと同等寸法のカバー内に収めてお

猪頭惇*3 大鶴徹*1 富来礼次*2
鄭在訓*3 NAZLI BIN CHE DIN*3(大分大)

り、uセンサは1対の熱線微風速計で構成されている。

2.2 校正手法の改良

deBree等はuセンサに関して、次の2つの 問題を指摘している⁵。

- 1. 高周波数域での感度低下。
- 2. 周波数毎の位相特性の相違。

これらの影響を回避するため、deBree等 は、音響管を用いたキャリブレーションを 提案している^{5.7)}。Fig.2に本論でキャリブ レーションに用いた音響管の概要を示す。 管端の音圧の実測値を*Pref*とすると、点xの 音圧*P*(*x*)、粒子速度*U*(*x*)はそれぞれ次式で 表される。

$$P(x) = \cos\{k(L-x)\} \cdot P_{ref} \qquad \dots (1)$$

$$U(x) = \frac{i}{\rho c} \sin\{k(L-x)\} \cdot P_{ref} \quad \dots(2)$$

ここで、k, ρ, c, iはそれぞれ波数、空気密 度、音速、虚数単位である。一方、点xの puセンサで測定された音圧及び粒子速度を *Pm(x), Um(x)*とすると、(1), (2)式より、音 圧、粒子速度の補正値*Cp(ω)*, *Cu(ω*)は次式で

Study of acoustics measurement using pu-sensor IGASHIRA Atsushi, OTSURU Toru, TOMIKU Reiji, Jeong Jeahun and NAZLI BIN CHE DIN

Fig. 4 Comparison of amplitude characteristics of u-sensor when rotated and no-rotated

63 125 250 500 1000 2000 4000 Freq.[Hz] Fig.5 Comparison of frequency characteristics of u-sensor when rotated and no-rotated

Fig.6 Frequency distribution of amplitude of usensor when rotated and no-rotated

得られる。

$$C_{p}(\omega) = \frac{P(x)}{P_{m}(x)} , C_{p}(\omega) = \frac{U(x)}{U_{m}(x)} ...(3)$$

ここで、 $P_m(x), Um(x)$ は、定在波の影響の ため、 $\lambda/4$ となる周波数で補正値が不定と なる。Fig.3($C_p(\omega)_{single}, C_u(\omega)_{single}$)に示すよ うにx=0.55mの1ヶ所の測定結果から得られ る補正値はピークディップが生じている。 安定した補正値を算出するため、 x=0.55, 0.62mの2ヶ所で測定した。2ヶ所の 測定から得られた補正値はFig.3($C_p(\omega)_{dual}, C_u(\omega)_{dual}$)に示すとおり、100~1500Hzの全 域にわたりほぼ安定した性能が得られるよ う合成して用いた。

2.3 pu センサのノイズ特性

Microflown社のマニュアルによるとpセンサに比しuセンサの自己ノイズが大きいとされている⁷。また、uセンサは熱線微風速計を用いるため、センサの移動に起因するノイズ(気流ノイズ)の発生が推測され

Fig.7 Outline of the directivity experiment

Fig.8 Characteristics of u-sensor when rotated and no-rotated(with/out sound source) at 250Hz

る。そこで、無響室で音源を用いず、uセンサ静止時と回転時のノイズ(自己ノイズ+ 気流ノイズ)の測定を行った。なお、回転 速度は64sec/roundで、測定時間は64secとした。

結果をFig.4に示す。センサ回転時にノイ ズの増加が確認された。Fig.5にそれぞれの 周波数特性を示す。センサ回転時は、 250Hz以下の低周波数域でノイズが大き く、125Hzで20dB、500Hz以上で約3dBノイ ズが増加した。最後に、uセンサ静止時と 回転時の振幅の度数分布をFig.6に示す。セ ンサ静止時は2つの正規分布がみられ、セ ンサ回転時では振幅の最大値と最小値の付 近で度数が大きい。

2.4 pu センサの指向性 2.4.1 実験概要

Microflown社のマニュアルの中で、uセン サの指向性は簡単に示されているが、周波 数毎の指向性は不明である。そこで、puセ ンサの周波数毎の指向性の測定を行う。 Fig.1のようにx,y,z軸をとり、x-y,x-zの2平面 について測定を行う。一例としてFig.7にxz平面の実験概要を示す。なお、音源には 250~8kHzの1oct.bandの中心周波数の純音

Fig. 9 Directivities of Microflown, p-sensors at 1kHz.

Fig. 10 Directivities of Microflown,u-sensor at difference frequency

を用い、センサは音源から2mの位置に設置した。

2.4.2 結果・考察

まず、センサ回転時のSN比の確認を行う。250Hzのセンサ静止時と回転時のuセンサの測定結果をFig.8に示す。比較のために音源なしの場合も併せて示している。セ

Fig.11 Block diagram of measurement system using TSP and MLS method

ンサ回転時のSN比は θ =80~100°,260~ 280°を除き、10dB以上確保できることが 確認された。

得られた結果の一例としてpセンサの1k Hzの指向性をFig.9に示す。x-y, y-z両平面 ともにほぼ無指向性であることが示され た。確認できた。なお、他の周波数でも同 様の指向性が得られた。これはセンサ全体 の形状やInletの効果によるものと考えられ る。

続いて、250~8k Hzのuセンサの指向性 を Fig.10に 示 す 。 両 平 面 と も に 0°,90°,180°,270°付近を除き、およそ cos θ 則に従う指向性となることが分かっ た。

puセンサを用いたインパルス応答測 定法

3.1 インパルス応答測定法

線形時不変系では、信号x(t)があるシス テムに入力された場合、出力される信号 y(t)は、システムのインパルス応答h(t)とノ イズn(t)の和であると家庭される。ここ で、n(t)はシステムに存在する背景雑音に 加え、測定するセンサの自己ノイズと背景 も含まれる。uセンサによる測定を考える 場合、特にuセンサは、pセンサに比し自己 ノイズが大きく注意が必要であると考え る。

3.2 測定手法の概要

本章では、puセンサを用いたインパルス 応答の測定を試みた。MLS法及びTSP法に よる音圧と粒子速度のインパルス応答(以 下、hp(t),hu(t)と表す)の測定を試みた。本論 で用いたTSP法及びMLS法による測定シス テムの概要をFig.11に示す。両手法とも同 期加算により、インパルス応答のSN比が 向上し、前述のn(t)は低下すると推測され る。なお、測定信号の次数は17、サンプリ ング周波数44.1kHz、TSP信号の継続時間及 びMLS信号の周期2.972sである。

Fig.13 Comparison of decay curves using p-u sensor (TSP method)

3.3 MLS及びTSP法による測定結果

まず、同期加算5回のhp(t), hu(t)をそれぞれ5set連続測定した。測定は大分大学の無響室、残響室、会議室(福祉環境工学棟3F)の3室で行った。

測定した $h_p(t)$, $h_u(t)$ およびそれぞれの減衰 曲線の一例をFig.12に示す。両手法による 結果の間に、直接波・各反射波の位置、お よび減衰傾斜の良好な一致がみられた。ま た、両手法の $h_p(t)$, $h_u(t)$ 間と5setの測定毎の $h_p(t)$, $h_u(t)$ 間の相関係数の平均値は、共に 0.959以上であり、十分な再現性が確認さ れた。

続いて、同期加算によるhp(t)とhu(t)のノ イズ除去に関する比較を行うため、同期加 算回数を0,1,5,10回と変化させて測定し た。hp(t),hu(t)から求めたSN比(SNRn)と減衰 曲線をFig.13に示す。同一の同期加算の hp(t)とhu(t)のSNRnの間には約11dBの差異が ある。これは2.3節に示すuセンサの自己ノ イズのためと考える。しかし、同期加算に 関しては、n(t)の低減はhp(t)とhu(t)共に同程 度の効果が得られ、同期加算5回で約6dB のSN比の向上がみられた。

最後に、試行的に*hp(t)*, *hu(t)*からインテン シティのインパルス応答(以下、*ht*(t)と表 す)を算出した。 $h_l(t)$ を以下に定義する。 $h_l = \langle pu \rangle_{At}$

ここで、〈〉 (Δt) は時間 Δt で移動平均する ことを表す。 Δt =0.005(sec)で算出した結果 をFig.14に示す。両手法毎のht(t)の相関係 数の平均値は0.83である。ht(t)の算出方法 やその利用方法については現在検討中であ る。

4. 結

以上、puセンサのノイズ特性と指向特性 を検討した後、音圧、粒子速度およびイン テンシティそれぞれのインパルス応答の測 定へ適用した結果を示した。本研究の推進にあ たり、卒論生の沓掛、三浦、村上の各君に協力を頂い た。また、H17年度学術振興会科学研究費(萌芽) 16656173「アンビエントノイズによる建築材料の音響特 性解明に関する研究」(代表・大鶴)の助成を頂いた。

参考文献

H-E de Bree, et al., Sensors and Actuators A 54(1996) 552-557.
岩瀬昭雄,縣音制御:Vol.24,No.5(2000),pp339-343
岩瀬昭雄,日本建築学会大会学術講演梗概集,D-1,113-116,2003.9
R.Lanoye et al., ISMA 2004
H-E de Bree et al., Inter-Noise2004

6)Microflown Technologies, Manual Microflown PU-Probe model A, ver. 1.0.6, 2002

7)H-E de Bree, et al, Sensors and Actuators A 54(1996) 552-557

- *1 大分大学工学部・教授・工博
- *2 同大学VBL研究員・博士(工学)
- *3 同大学工学研究科・博士前期課程
- *1 Prof., Faculty of Eng., Oita Univ., Dr. of Eng.
- *2 P.D. Research Fellow, Venture Business Laboratory, Oita Univ., Ph. D
- *3 Graduate School, Oita Univ.